

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 598 (2000) 292-303

Dimere der Ethene $Me_2E=C(SiMe_3)_2$ (E = Si, Ge, Sn): Auf welchem Wege entstehen sie aus $Me_2EX-CM(SiMe_3)_2$? Wie sind sie strukturiert?^{\$\phi\$}

N. Wiberg *, T. Passler, S. Wagner, K. Polborn

Department Chemie der Universität München, Butenandtstrasse 5-13 (Haus D), D-81377 Munich, Germany

Eingegangen am 20 August 1999; akzeptiert am 16 November 1999

Dedicated to Professor Dr Heinrich Vahrenkamp on the occasion of his 60th birthday.

Abstract

Alkali metal organyls or silyls MR (e.g. LiMe, LiⁿBu, Li^pBu, LiPh, LiCH(SiMe₃)₂, LiC(SiMe₃)₃, NaSi'Bu₃) convert equimolar amounts of bromomethanes Me₂EX–CBr(SiMe₃)₂ with E = Si, Ge, Sn and electronegative substituents X (e.g. F, Br, OPh) in organic solvents (e.g. pentane, diethyl ether, tetrahydrofuran) (i) by a very fast Br/M exchange into the 'metalation products' Me₂EX–CM(SiMe₃)₂, which thermolyze under formation of 'cyclobutanes' [-Me₂E–C(SiMe₃)₂-]₂, and (ii) to a lesser extent by X/R exchange into 'substitution products' Me₂ER–CBr(SiMe₃)₂. As shown by trapping experiments, the unsaturated compounds Me₂E=C(SiMe₃)₂ play the role of short-lived intermediates in both reactions. They are formed from Me₂EX–CM(SiMe₃)₂ by MX elimination and add the present alkalimetal compounds Me₂EX–CM(SiMe₃)₂ \equiv MR' or MR, respectively. The products Me₂ER/-CM(SiMe₃)₂ with R' = C(EXMe₂)(SiMe₃)₂, obtained in this way, eliminate MX under formation of the mentioned 'cyclobutanes'. On the other hand, the compounds Me₂ER–CM(SiMe₃)₂ convert unreacted Me₂EX–CBr(SiMe₃)₂ in Me₂EX–CM(SiMe₃)₂ under formation of Me₂ER–CBr(SiMe₃)₂. Relative rates of both the metalation reactions and the salt eliminations are determined. X-ray structure analyses of [-Me₂E–C(SiMe₃)₂-]₂ (E = Si, Ge, Sn) prove their 1,3-dielementacyclobutane structure with planar four-membered ECEC rings.

Zusammenfassung

Alkalimetallorganyle oder -silyle MR (z.B. LiMe, Li''Bu, Li'Bu, LiPh, LiCH(SiMe₃)₂, LiC(SiMe₃)₃, NaSi'Bu₃) verwandeln äquimolare Mengen von Brommethanen Me₂EX–CBr(SiMe₃)₂ mit E = Si, Ge, Sn und elektronegativen Substituenten X (z.B. F, Br, OPh) in organischen Lösungsmitteln (z.B. Pentan, Diethylether, Tetrahydrofuran) (i) durch einen sehr raschen Br/M-Austausch in 'Metallierungsprodukte' Me₂EX–CM(SiMe₃)₂, welche unter Bildung von 'Cyclobutanen' [–Me₂E–C(SiMe₃)₂–]₂ thermolysieren, und (ii) in einem geringeren Ausmaß durch X/R-Austausch in 'Substitutionsprodukte' Me₂ER–CBr(SiMe₃)₂. Wie Abfangversuche gezeigt haben, spielen die ungesättigten Verbindungen Me₂E=C(SiMe₃)₂ in beiden Reaktionen die Rolle von kurzlebigen Zwischenstufen. Sie bilden sich aus Me₂EX–CM(SiMe₃)₂ durch MX-Eliminierung und addieren die anwesenden Alkalimetallverbindungen Me₂EX–CM(SiMe₃)₂ \equiv MR' bzw. MR. Die auf diesem Wege gebildeten Produkte Me₂ER'–CM(SiMe₃)₂ mit R' = C(EXMe₂)(SiMe₃)₂ eliminieren MX unter Bildung der erwähnten 'Cyclobutane'. Andererseits überführen die Verbindungen Me₂ER–CM(SiMe₃)₂ noch nicht umgesetztes Me₂EX–CBr(SiMe₃)₂ in Me₂EX–CM(SiMe₃)₂ unter Bildung von Me₂ER–CBr(SiMe₃)₂. Sowohl die relativen Geschwindigkeiten der Metallierungsreaktionen als auch die der Salzeliminierungen wurden bestimmt. Die Röntgenstrukturanalysen von [–Me₂E–C(SiMe₃)₂–]₂ (E = Si, Ge, Sn) beweisen deren 1,3-Dielementacyclobutanstruktur mit planaren 4-gliedrigen ECEC-Ringen. © 2000 Elsevier Science S.A. All rights reserved.

Keywords: Silaethene; Germaethene; Stannaethene; Insertionen; [3 + 2]-Cycloadditionen; Röntgenstrukturanalysen

[☆] See Ref. [1].

^{*} Corresponding author. Tel.: +49-89-21807456; fax: +49-89-21807865.

E-mail address: niw@cup.uni-muenchen.de (N. Wiberg)

1. Einleitung

Wie D. Seyferth und J.L. Lefferts im Jahre 1974 fanden [2], reagieren $Me_2SiCl-CBr(SiMe_3)_2$, Me₂GeBr-CBr(SiMe₃)₂ oder Me₂SnCl-CBr(SiMe₃)₂ mit einer äquimolaren Menge der Lithiumverbindung LiCBr(SiMe₃)₂ in Ether im Zuge des Erwärmens des Solvens von -115°C auf Raumtemperatur unter Bildung der 1,3-Disila-, 1,3-Digerma- und 1,3-Distannacyclobutane $[-Me_2E-C(SiMe_3)_2-]_2$ (E = Si, Ge, Sn). Wir konnten dann in den Folgejahren zeigen, daß letztere 'Cyclobutane' ganz allgemein entstehen, wenn man zu den Brommethanen Me₂EX-CBr(SiMe₃)₂ (X insbesondere Halogen, OPh) in Pentan, Diethylether oder Tetrahydrofuran bei - 78°C Alkalimetallorganyle oder -silyle MR (insbesondere LiⁿBu, LiPh, LiCH(SiMe₃)₂, NaSi'Bu₃) in organischen Medien tropft und anschließend das Reaktionsgemisch auf Raumtemperatur erwärmt [3-5]. Als reaktive Zwischenstufen konnten wir hierbei das Silaethen ('Silen') $Me_2Si=C(SiMe_3)_2$ (1) [3], das Germaethen ('Germen') $Me_2Ge=C(SiMe_3)_2$ (2) [4] sowie das Stannaethen ('Stannen') Me₂Sn=C(SiMe₃)₂ (3) [5] nachweisen.

Und zwar bilden sich nach unseren eingehenden Studien [3-5] im Sinne des Schema 1, Reaktionen (a) und (b), zunächst unter Austausch von Br gegen M sehr rasch, d.h. selbst unterhalb -78° C, die 'Metallierungsprodukte' Me₂EX-CM(SiMe₃)₂, welche unter MX-Abspaltung — d.h. *thermischer Salzeliminierung* — bei unterschiedlichen, von E, M, X und dem Solvens abhängigen Temperaturen in **1**, **2** oder **3** übergehen. Letztere Intermediate lassen sich in Anwesenheit geeigneter Reaktanden wie Alkalimetallorganylen, Ketonen, Aziden, organischen Dienen und Enen in stabile

Schema 1. Zur Bildung von $(1)_2$, $(2)_2$, $(3)_2$ aus Me₂EX–CBr(SiMe₃)₂ und MR (X z. B. Hal, OPh; MR z.B. Li^{*n*}Bu, LiPh, LiCH(SiMe₃)₂, NaSi'Bu₃).

Folgeprodukte (Insertionsprodukte, [2 + 2]-, [3 + 2]-, [4 + 2]-Cycloaddukte, En-Reaktionsprodukte) überführen (Schema 1, Reaktion (c)), während sie in Abwesenheit derartiger 'chemischer Fänger' zu den Dimeren (1)₂, (2)₂ und (3)₂ abreagieren.

Die Bildung von $(1)_2$, $(2)_2$ und $(3)_2$ könnte im Sinne des Schema 1 einerseits durch Dimerisierung (d) der gemäß (a, b) gebildeten Verbindungen 1, 2 und 3, andererseits aber auch durch Insertion (e) der ungesättigten Verbindungen Me₂E=C(SiMe₃)₂ in die MC-Bindungen von Me₂EX-CM(SiMe₃)₂ erfolgen, wobei sich die Insertionsprodukte $Me_2EX-C(SiMe_3)_2$ - $EMe_2-C(SiMe_3)_2M$ (4) auf dem Wege (g) unter MX-Eliminierung cyclisierten. Da die intermediäre Existenz von 1, 2 und 3 durch Abfangen der ungesättigten Verbindungen mit reaktiven Fängern wie etwa Aziden eindeutig nachweisbar ist (vgl. [3-5] sowie unten), muß der ebenfalls denkbare, im Schema 1 wiedergegebene Weg (f) und (g) der Bildung von $(1)_2$, $(2)_2$ und $(3)_2$ entgegen früheren Vorstellungen [3] unter allen Reaktionsbedingungen ausgeschlossen werden.

Im Zuge der Dimerisierung der Moleküle 1, 2 und 3 bleibt die Symmetrie der Molekülorbitale nicht erhalten. Die Reaktion kann demgemäß nach den Regeln von Woodward und Hoffmann [6] nicht als Synchronprozeß ablaufen, sondern sie muß in Stufen erfolgen, z.B. 2 $Me_2E=C(SiMe_3)_2 \rightarrow Me_2E^+-C(SiMe_3)_2-EMe_2 C^-(SiMe_3)_2 \rightarrow (1)_2$, (2)₂ oder (3)₂. Wie wir nun kürzlich wahrscheinlich machen konnten, führt die thermische Cycloreversion der [4 + 2]-Cycloaddukte aus 1, 2 und 3 mit Anthracen im Lösungsmittel Benzol über freies Silen, Germen und Stannen direkt zu den Dimeren [7].

Es stellte sich in diesem Zusammenhang nicht nur die Frage nach den Strukturen von $(1)_2$, $(2)_2$ und $(3)_2$, sondern insbesondere auch die Frage nach dem Mechanismus der Bildung von $(1)_2$, $(2)_2$ und $(3)_2$ im Zuge der Thermolyse von Me₂EX–CM(SiMe₃)₂. Tatsächlich sprechen die unten geschilderten Studien dafür, daß sich die Dimeren im Zuge der thermischen Salzeliminierung nicht durch Dimerisierung von Me₂E=C(SiMe₃)₂ auf dem Wege (d), sondern hälftig aus Me₂E=C(SiMe₃)₂ und hälftig aus Me₂EX–CM(SiMe₃)₂ auf den Wegen (e) und (g) des Schema 1 bilden.

Berichtet wird nachfolgend über Produkte und Geschwindigkeitsverhältnisse der Reaktionen von Me₂EX–CBr(SiMe₃)₂ mit MR, dann über die Thermolysen der hierbei gewonnenen Verbindungen Me₂EX-CM(SiMe₃)₂ in An- und Abwesenheit von Fängern für 1, 2, 3 (Bildung von 'Dimeren' und/oder Abfangprodukten), schließlich über den röntgenstrukturanalytisch geklärten Bau der Dimeren. Eine nachstehende Veröffentlichung [8] beschäftigt sich des weiteren mit der Reaktivität der durch thermische Salzeliungesättigten minierung intermediär erzeugten Verbindungen Me₂E=C(SiMe₃)₂ hinsichtlich Metallorganylen und Aziden.

2. Produkte und Geschwindigkeitsverhältnisse der Reaktionen von Me₂EX-CBr(SiMe₃)₂ mit MR

Tropft man zu Lösungen der Brommethane $Me_2EX-CBr(SiMe_3)_2$ (E = Si, Ge, Sn; X = elektronegativer Rest wie F, Cl, Br, I, OPh, OMe) in Pentan, Diethylether oder Tetrahydrofuran Lösungen mit äquimolaren Mengen an Alkalimetallorganylen MR wie LiMe, LiⁿBu, Li^tBu, LiPh, LiCH(SiMe₃)₂, LiC(SiMe₃)₃, NaSi^tBu₃, so entstehen nach unseren Studien einerseits unter Austausch von Br gegen M 'Metallierungsprodukte' Me₂EX-CM(SiMe₃)₂ (Schema 2, Reaktion (b)), die sich — wie oben besprochen — in Cyclobutane $(1)_2$, $(2)_2$, $(3)_2$ umwandeln, and ererse its zusätzlich unter Austausch von X gegen R 'Substitutionsprodukte' Me₂ER–CBr(SiMe₃)₂ (Schema 2, Reaktion (a)). Zudem beobachtet man gegebenenfalls einen Austausch von M der gemäß Schema 2, Reaktion (b) gebildeten Metallierungsprodukte gegen R der zugleich Organylbromide gebildeten RBr, wobei 'Organylierungsprodukte' Me₂EX-CR(SiMe₃)₂ entstehen.

2.1. Bildung der Metallierungsprodukte

Die Bildung der Metallierungsprodukte $Me_2EX-CM(SiMe_3)_2$ aus $Me_2EX-CBr(SiMe_3)_2$ und MR (vgl. Schema 1, Reaktion (a)) erfolgt in der Regel rascher als die Bildung der Cyclobutane, Substitutions- und Organylierungsprodukte. Nach unseren Studien wird die

Schema 2. Zur Bildung von $Me_2ER-CBr(SiMe_3)_2$ bzw. $Me_2E=C(SiMe_3)_2 \cdot RN_3$ aus $Me_2EX-CBr(SiMe_3)_2$ und MR in Ab- und Anwesenheit von RN₃ (MR z.B. Li"Bu, LiPh; X z.B. Br, F; RN₃ z.B. 'BuN₃, Me_3SiN_3 , 'BuMe₂SiN₃, 'Bu₂MeSiN₃, 'Bu₃SiN₃).

Metallierungsgeschwindigkeit für Me₂EX–CBr(SiMe₃)₂ mit elektronegativem Substituenten X durch die Art sowohl des Reaktionsmediums als auch des Metallorganyls mitbestimmt (vgl. Tabelle 2): Sie ist in Pentan kleiner, in THF größer als in Et₂O; auch stellt LiPh ein wirkungsvolleres Metallierungsmittel dar als Li"Bu. Sowohl elektronische als auch sterische Effekte beeinflussen die Metallierungsaktivität von MR, wie aus folgender Reihe aufgefundener Metallierungsgeschwindigkeiten hervorgeht: LiPh > LiⁿBu, LiCH- $(SiMe_3)_2 > NaSi'Bu_3 > LiC(SiMe_3)_3$ und $Li^nBu > Li'Bu$ (vgl. Tabelle 2). Einen Einfluß auf die Geschwindigkeit des Br/M-Austauschs hat auch der Substituent X in $Me_2EX-CBr(SiMe_3)_2$. So wird $Me_2SiBr-CBr(SiMe_3)_2$ unter vergleichbaren Bedingungen deutlich rascher als Me₂SiBu-CBr(SiMe₃)₂ metalliert (vgl. Tabelle 2).

Über die Strukturen der Metallierungsprodukte in Substanz bzw. in Lösung liegen bisher keine Ergebnisse vor. Sie dürften aber den bekannten Strukturen von donorhaltigen und -freien Metallorganylen des Typs 'Bu₂SiX-CLi(SiMe₃)₂ [9], Me₂SiX-CLi(SiMe₃)-(SiMe'Bu₂) [9] und LiC(SiMe₃)₃ [10] entsprechen. Hiernach sollten Lithiumorganyle Me₂EX-CLi(SiMe₃)₂ in THF, Et₂O bzw. Pentan die in Schema 3 wiedergegebenen Strukturen **6**, **7** bzw. **8** aufweisen.

2.2. Bildung der Substitutionsprodukte

Der Mechanismus des Austauschs von X gegen R besteht nach unseren neueren Ergebnissen (vgl. Abschnitt 3) nicht in einer assoziativ-aktivierten Verdrängegen R- am Zentrum E der gung von X⁻ betreffenden Brommethane Me₂EX-CBr(SiMe₃)₂ (S_N2-Reaktion; vgl. Schema 2, Reaktion (a)), sondern in einem — für Si-, Ge- und Sn-Zentren unüblichen dissoziativ-aktiviert verlaufenden Ersatz von X⁻ gegen R^- am Zentrum E der aus Me₂EX-CBr(SiMe₃)₂ und MR durch Br/M-Austausch zunächst gebildeten Alkalimetallorganyle Me₂EX–CM(SiMe₃)₂ (S_N1-Reaktion; vgl. Schema 2, Reaktionen (b), (c) und (d)). Die Weiterreaktion der auf diese Weise gebildeten Verbindungen Me₂ER-CM(SiMe₃)₂ erfolgt dann im Zuge eines ebenfalls raschen Austauschs von M gegen Br noch unmetallierter Edukte Me₂EX-CBr(SiMe₃)₂; hierbei bilden sich die weniger basischen Alkalimetallorganyle Me₂EX-CM(SiMe₃)₂ neben den Substitutionsprodukten Me₂ER-CBr(SiMe₃)₂ (vgl. Schema 2, Reaktion (e)). Allerdings unterbleibt letztere Umwandlung im Falle von Addukten Me₂ER-CM(SiMe₃)₂ mit sperrigen Resten R wie z.B. 'Bu (vgl. Tabelle 2). Es sei auch angemerkt, daß Li'Bu in Et₂O ausschließlich unter Addition von LiH (gebildet nach $Li^{t}Bu \rightarrow LiH +$ Me₂C=CH₂), in Pentan unter Addition von Li^tBu an die SiC-Doppelbindung reagiert. Mit 2 setzt sich Li'Bu in Et₂O hauptsächlich unter Li^tBu-Addition um [4].

Das Ausmaß der Substitutionsreaktion hängt naturgemäß von den Geschwindigkeiten der Bildung und des Zerfalls der Metallierungsprodukte Me2EX-CM(SiMe₃)₂ sowie von der Geschwindigkeit der MR-Addition an 1, 2, 3 ab [8]: Geringe Mengen an Substitutionsprodukt entstehen bei rascher Metallierung und/oder langsamer Reaktion von 1, 2, 3 (aus Me₂EX-CM(SiMe₃)₂) mit MR und umgekehrt. Demgemäß führt etwa die Einwirkung von LiPh (sehr gutes Metallierungsmittel, mittelmäßiger Fänger [8]) auf Me₂SiBr-CBr(SiMe₃)₂ in Et₂O bei - 78°C zu keinem Substitutionsprodukt, während die Einwirkung von LiⁿBu bzw. Li^tBu (gutes bzw. schlechtes Metallierungsmittel; guter bzw. sehr schlechter Fänger [8]) auf $Me_2SiBr-CBr(SiMe_3)_2$ in Pentan bei $-78^{\circ}C$ ausschließlich (Li"Bu) bzw. teilweise (Li'Bu) Substitutionsprodukte liefert (vgl. Tabelle 2).

Die im Hinblick auf die Synthese von Me2EX-CM(SiMe₃)₂ aus Me₂EX-CBr(SiMe₃)₂ und MR unerwünschte Nebenreaktion der Bildung von Me2ER-CM(SiMe₃)₂ läßt sich nach unseren Studien mehr oder weniger unterdrücken (i) durch Arbeiten bei niedrigen Umsetzungstemperaturen und kleinen Reaktandenkonzentrationen, (ii) durch Verwendung geeigneter Lösungsmittel (THF besser als Et₂O und Et₂O besser als Pentan), (iii) durch Einsatz geeigneter Vorstufen der Bildung von $Me_2EX-CM(SiMe_3)_2$ (X = F, I besser als Br, Cl) und — wie erwähnt — (iv) durch Nutzung geeigneter, rasch unter Br/M-Austausch (LiPh besser als Li"Bu) sowie langsam unter X/R-Austausch (Li'Bu, LiCH(SiMe₃)₂, LiC(SiMe₃)₃, NaSi'Bu₃ besser als LiPh, LiⁿBu) reagierender Metallorganyle MR (vgl. Tabelle 2 und [8]).

2.3. Bildung der Organylierungsprodukte

Organylierungsprodukte entstehen immer dann, wenn die Organylierung mit RBr rascher als der Zerfall der betreffenden Metallierungsprodukte in $(1)_2$, $(2)_2$, $(3)_2$ erfolgt (Methylierung bei -78° C; Butylierung ab ca. -45°C; keine Phenylierung; bezüglich der Zerfallsgeschwindigkeit von Me₂EX-CM(SiMe₃)₂ s. unten). tert-Butylbromid 'BuBr protoniert die gebildeten Metallorganyle Me₂EX-CM(SiMe₃)₂ und Me₂ER-CM-(SiMe₃)₂ mehr oder weniger rasch unter Eliminierung von Isobuten (vgl. Abschnitt 6): Isobuten kann sich dann seinerseits mit 1, 2, 3 unter En-Reaktion umsetzen [11]. Mit Li'Bu reagiert 'BuBr — zumindest in Pentan - nicht, wie schon aus der Synthesemöglichkeit von Li'Bu aus Li und 'BuCl in Pentan bei Raumtemperatur folgt [12]. Aus den dargelegten Gründen nutzt man als Metallierungsmittel für Me2EX-CBr(SiMe3)2 in Pentan bzw. Et₂O mit Vorteil LiⁿBu sowie LiPh, in THF LiⁿBu und zudem auch LiCH(SiMe3)2 sowie NaSi'Bu3 (LiPh zersetzt THF [12]).

3. Produkte und Geschwindigkeitsverhältnisse der Thermolyse von $Me_2EX-CM(SiMe_3)_2$ in Anoder Abwesenheit von Fängern für 1, 2 und 3

3.1. Anwesenheit von Metallorganylen oder Aziden als Fängern

Für den in Schema 2 postulierten Mechanismus der Bildung der Substitutionsprodukte (Reaktionen (b), (c), (d), (e)) spricht insbesondere der Befund, daß bei Umsetzungen von Me₂EX-CBr(SiMe₃)₂ mit MR in organischen Medien bei - 78°C in Anwesenheit geeigneter Azide RN_3 als Fänger für 1, 2 und 3 [8] — anders als in deren Abwesenheit - keine 'Substitutionsprodukte' Me₂ER-CBr(SiMe₃)₂ entstehen, sondern ausschließlich [3+2]-Cycloaddukte 1·RN₃, 2·RN₃ und 3·RN₃ der Azide RN₃ mit 1, 2 und 3 (vgl. Schema 2, Reaktion (f) und (g)) [5,13]. Somit muß die angesprochene Substitution von X gegen R über die freien ungesättigten Verbindungen 1, 2 und 3 verlaufen, die unter MX-Eliminierung aus Me₂EX-CM(SiMe₃)₂ hervorgehen und MR unter Bildung von Me₂ER-CM(SiMe₃)₂ oder konkurrierend hierzu — RN_3 unter Bildung von $1 \cdot RN_3$, 2.RN3 und 3.RN3 addieren. Die erwähnten, nach den Regeln von Woodward und Hoffmann [6] symmetrieerlaubten [3 + 2]-Cycloadditionen von 1, 2 und 3 mit RN₃ erfolgen offensichtlich im Sinne des Schemas 2 als Synchronreaktionen über aktivierte Komplexe 5 (eine direkte Reaktion von Me₂EX-CM(SiMe₃)₂ mit RN₃ ist nach den Ergebnissen von Konkurrenzabfangversuchen auszuschließen [8]).

Wegen der hohen Fängerqualitäten vieler Reaktanden MR wie LiMe, Li"Bu, LiPh kommen für eine wirkungsvolle Konkurrenz naturgemäß nur sehr effektive Partner wie etwa Azide Me₃CN₃, Me₃SiN₃, ^tBuMe₂SiN₃, ^tBu₂HSiN₃, ^tBu₂MeSiN₃ in Frage [8]. Hinsichtlich MR geringerer Fängerqualitäten, z.B. Lithiumorganylen mit sperrigen Resten R, wirken aber auch trägere Reaktanden als konkurrierende Fänger. Demgemäß bilden sich beim Erwärmen etherischer, auf - 78°C gekühlter Lösungen von Me₂SiBr-CBr(SiMe₃)₂ und zugleich überschüssigem Disyllithium LiCH-(SiMe₃)₂ sowie 'Bu₃SiN₃ bzw. 2,3-Dimethylbutadien (DMB) auf dem Wege über Me₂SiBr-CLi(SiMe₃)₂ nebeneinander die Abfangprodukte von 1 mit LiCH-(SiMe₃)₂ sowie mit 'Bu₃SiN₃ bzw. DMB [8], darüber hinaus das Cyclobutan (1)2. Da DMB nachgewiesenermaßen [11] nicht mit Me2SiBr-CLi(SiMe3)2, sondern mit dem daraus hervorgehenden Silen 1 reagiert, muß im Sinne des oben Gesagten Entsprechendes für ^tBu₃SiN₃ und LiCH(SiMe₃)₂ oder — allgemein — für Azide und Lithiumorganyle gelten [8].

3.2. Abwesenheit von Fängern

Die Lage des sich nach der Bildung von Me₂EX-CM(SiMe₃)₂ einstellenden *Gleichgewichts* zwi-

schen Me₂EX–CM(SiMe₃)₂ und 1, 2, 3 sowie MX (vgl. Schema 1) hängt von der Art des Elements E, des Substituenten X, des Alkalimetalls M sowie des Lösungsmittels D ab, wobei letzteres mit den ungesättigten Verbindungen Addukte Me₂E(D)–C(SiMe₃)₂ zu bilden vermag, falls es wie Et₂O, THF, NMe₃ basische Eigenschaften hat [3,4,14]. Nach bisherigen Ergebnissen liegt das angesprochene Gleichgewicht aber unabhängig von X (z.B. F, Cl, Br, I, OPh, OMe) und vom Solvens deutlich auf der Seite von Me₂EX–CM(SiMe₃)₂. Donoraddukte mit NMe₃ oder THF bilden sich nur unter besonderen Bedingungen (Reaktionen in Alkanen und Anwesenheit geringer Mengen an Donor) [14].

Der mit der Gleichgewichtseinstellung Me2EX-CM- $(SiMe_3)_2 \rightleftharpoons 1, 2, 3 + MX$ verbundene Mechanismus der reversiblen MX-Eliminierung ist im einzelnen noch ungeklärt. Die MX-Eliminierung, die nach dem Besprochenen je nach Solvens von 6, 7 oder 8 ausgeht, muß aber im Sinne des Schema 3 im Zuge der Knüpfung von M…X-Bindungsbeziehungen auf dem Wege über Verbindungen des Typs 9 letztendlich unter Bildung von solvatisierten Molekülen 1, 2, 3 erfolgen, so daß also die Lage des zur Diskussion stehenden Gleichgewichts durch die relativen Stabilitäten von 6, 7 bzw. 8 und solvatisiertem 1, 2 bzw. 3 bestimmt wird. Es kann dadurch gestört werden, daß MX aus dem Solvens auskristallisiert. Darüber hinaus vermögen die zur Bildung von Me₂EX-CM(SiMe₃)₂ aus Me₂EX-CBr(SiMe₃)₂ eingesetzten Alkalimetallorganyle MR, die Gleichgewichtskonzentrationen neben in kleinen $Me_2EX-CM(SiMe_3)_2$ existierenden Verbindungen 1, 2 und 3 herauszufangen [8].

Die von E, X, M und dem Solvens abhängigen *relativen Geschwindigkeiten* der MX-Eliminierung aus Me₂EX–CM(SiMe₃)₂ (vgl. Tabelle 2) entsprechen den relativen Geschwindigkeiten der Fängerreaktionen, falls

1_{solv}, 2_{solv}, 3_{solv} 1, 2, 3

Schema 3. Thermische Salzeliminierung aus $Me_2EX-CM(SiMe_3)_2$ in Tetrahydrofuran THF, Diethylether Et_2O oder Pentan Pe (= solv) und Ab- oder Anwesenheit von Me_3SiCl.

letztere rascher als die Salzeliminierungen erfolgen [8]. Interessanterweise läßt sich die MX-Eliminierung aus Me₂EX-CM(SiMe₃)₂ durch Trimethylsilylchlorid, das hinsichtlich Me₂EX-CBr(SiMe₃)₂ bzw. 1 und 2 nicht als Silylierungsmittel bzw. Fänger wirkt, beschleunigen (vgl. hierzu die LiF-Eliminierung aus 'Bu₂SiF-CLi-(SiMe₃)₂ [9] und die LiOR-Eliminierung aus Me₂EOR-CLi(SiMe₃)₂ in Anwesenheit von Me₃SiCl [3,4]). Letzterer Sachverhalt ließe sich mit der Bildung von Zwischenprodukten des Typs 10 (Schema 3) erklären, die leichter als 9 aus 6, 7, 8 entstehen und leichter in 1, 2, 3 übergehen würden (da sich Me₃SiCl in Me₃SiX umwandelt und damit in das Reaktionsgeschehen eingreift, liegt keine Katalyse vor; Me₃SiCl muß deshalb mindestens in äquimolarer Menge eingesetzt werden).

4. Zur Frage des Bildungswegs von $(1)_2$, $(2)_2$ und $(3)_2$ aus Me₂EX-CM(SiMe₃)₂

Der im Schema 1 postulierte *Bildungsmechanismus* der 'Cyclobutane' (Reaktionen (b), (e), (g)), wonach letztere hälftig aus Me₂E=C(SiMe₃)₂ und hälftig aus Me₂EX-CM(SiMe₃)₂ entstehen, wird gestützt u.a. durch das Ergebnis der Thermolyse von Me₂SiBr-CLi-(SiMe₃)₂ \equiv LiC(SiBrMe₂)(SiMe₃)₂ \equiv LiR' in Anwesenheit der räumlich hiermit vergleichbaren Verbindung LiC(SiMe₃)₃ \equiv LiR in Et₂O bei – 90°C im Zuge des Erwärmens auf Raumtemperatur; als Produkte bilden sich hierbei nebeneinander (1)₂ (Folgeprodukt von zwischenzeitlich gebildetem Me₂SiR'-CLi(SiMe₃)₂) und Me₂SiR-CLi(SiMe₃)₂, was eine Konkurrenz beider lithiumorganischer Verbindungen um das intermediär gebildete Silaethen 1 beweist.

In diesem Zusammenhang ist die Beobachtung von Interesse, daß eine etherische, auf -90° C gekühlte Lösung von Me₂SiBr-CLi(SiMe₃)₂ und Trisyllithium LiC(SiMe₃)₃ × 2THF sowie geringen Mengen des Alkoholats LiOCH=CH₂ \equiv LiOVi nach Versetzen des auf Raumtemperatur erwärmten Reaktionsgemischs mit Methanol als Produkte neben (1)₂ und Me₂SiR-CH(SiMe₃)₂ (R = C(SiMe₃)₃) auch geringe Mengen an Me₂SiOVi-C(SiMe₃)₂-SiMe₂-CH(SiMe₃)₂ enthält. Hiermit wurde ein Beispiel der im Schema 1 postulierten und im vorliegenden Falle nicht cyclisierten — Zwischenstufe 4 aufgefunden: $1 + \text{LiOVi} \rightarrow 1 \cdot \text{LiOVi}$; $1 \cdot \text{LiOVi} + 1 \rightarrow 4$ (X = OVi); 4 (X = OVi) + MeOHq \rightarrow Me₂SiOVi-C(SiMe₃)₂-SiMe₂-CH(SiMe₃)₂ + LiOMe.

Die Fängerqualitäten des Metallorganyls $Me_2EX-CM(SiMe_3)_2 \equiv MR'$ mit dem raumerfüllendem Rest $R' = C(EXMe_2)(SiMe_3)_2$ sind erfreulicherweise gering; denn anderenfalls könnten viele Fänger nicht mit $Me_2EX-CM(SiMe_3)_2$ hinsichtlich **1**, **2** und **3** konkurrieren, so daß die Palette gewinnbarer Abfangprodukte stark eingeschränkt wäre. Immerhin haben wir auch eine Reihe von Reaktanden gefunden, die mit

Abb. 1. Strukturen von (1)₂, (2)₂ und (3)₂ (E = Si, Ge, Sn) im Kristall (ORTEP-Plot; thermische Schwingungsellipsoide 25%; Lokalsymmetrie: C_{2v}). Ausgewählte Bindungslängen und –winkel sind in Tabelle 1 wiedergegeben.

Tabelle 1

Ausgewählte Bindungslängen (Å) und -winkel (°) für $(1)_2$, $(2)_2$, $(3)_2$ (Atomnumerierung vgl. Abb. 1); die Verbindungen weisen eine 2zählige Achse durch Cl und C2 auf

$(1)_2, (2)_2, (3)_2$	E = Si	E = Ge	E = Sn	
Bindungslängen				
E-C1	1.914(3)	2.009(6)	2.218(6)	
E-C2	1.914(2)	2.010(6)	2.207(6)	
E-C3	1.870(3)	1.967(6)	2.134(7)	
E-C4	1.873(3)	1.949(6)	2.142(7)	
Sil-Cl	1.900(2)	1.899(5)	1.882(5)	
Si2-C2	1.899(2)	1.894(5)	1.877(5)	
E-EA	2.612(2)	2.779(2)	3.080(1)	
C1–C2	2.799(2)	2.904(2)	3.176(2)	
Bindungswinkel				
C1-E-C2	94.0(1)	92.5(2)	91.8(2)	
E-C2-EA	86.1(1)	87.5(3)	88.5(3)	
E-C1-EA	86.0(2)	87.5(3)	87.9(3)	
E-C1-Si1	119.3(1)	118.4(1)	117.2(1)	
E-C2-Si2	119.2(1)	118.1(1)	116.1(1)	
C1-E-C3	114.4(1)	114.5(2)	115.4(2)	
C1-E-C4	117.6(1)	118.1(2)	116.8(2)	
C3-E-C4	100.4(1)	100.7(3)	101.5(3)	
Sil-Cl-SilA	106.2(2)	107.5(4)	109.7(4)	
Si2-C2-Si2A	106.2(2)	108.2(4)	110.4(4)	
E-C1-EA-C2	0.0	0.0	0.0	

 $Me_2EX-CM(SiMe_3)_2$ in Et_2O um 1 sowie 2 weniger (z.B. 'Bu₃SiN₃ [13]) oder nicht konkurrieren (z.B. *cis*-Pentadien [11]). In den allerletzten Fällen bilden sich nur Abfangprodukte in Anwesenheit von Quellen, die — wie die Addukte von 1, 2, 3 mit Anthracen (vgl. Abschnitt 1) — die ungesättigten Verbindungen 1, 2 und 3 bei weit höheren Temperaturen als Me_2EX - CM(SiMe₃)₂ in Freiheit setzen [7]. Die meisten Metallorganyle MR sind hinsichtlich **1**, **2** und **3** jedoch additionsfreudiger als Me₂EX–CM(SiMe₃)₂, und es entstehen als Folge der Zugabe von Me₂EX–CBr-(SiMe₃)₂ zur doppelten Menge LiR in organischen Medien ausschließlich die Alkalimetallorganyle Me₂ER– CLi(SiMe₃)₂, welche nach der Methanolyse Verbindungen des Typs Me₂ER–CH(SiMe₃)₂ liefern.

5. Strukturen von $(1)_2$, $(2)_2$ und $(3)_2$

Die Dimeren $(1)_2$, $(2)_2$ und $(3)_2$ lassen sich aus Ether bzw. Benzol in Form farbloser Kristalle gewinnen, die bei 215, 226, 250°C schmelzen (vgl. Ref. [2]: 208-210°C, 225-226°C, 248-250°C) und luft- sowie hydrolysestabil sind. Die Molekülstrukturen der röntgenstrukturanalytisch untersuchten Verbindungen sind in Abb. 1, wichtige Bindungslängen und -winkel in Tabelle 1 wiedergegeben (bezüglich der Struktur von (1) vgl. auch [15]). Wie aus Abb. 1 hervorgeht bilden die 'Cyclobutane' [-Me₂E-C(SiMe₃)₂-]₂ Rauten, deren Ecken abwechselnd mit EMe2- und C(SiMe3)2-Gruppen besetzt sind. Eine 2-zählige Achse verläuft jeweils durch die Kohlenstoffatome C1 und C2. Die E-C-Abstände sind innerhalb der Ringe der Dimeren jeweils etwas größer als außerhalb der Ringe, die äußeren Si-C_{Ring}-Abstände in $(1)_2$, $(2)_2$ und $(3)_2$ miteinander vergleichbar. Die Winkel an den Silicium-, Germanium- bzw. Zinnatomen der Cyclobutanringe haben größere, die an den Kohlenstoffatomen kleinere Werte als 90°. Die transannularen E-E-Abstände sind sogar kürzer als die transannularen C-C-Abstände. Der Torsionswinkel E-C1-E-C2 beträgt 0°, d.h. die Ringe weisen keine Faltung auf. Der Grundkörper [-H2Si-CH2-]2 zeigt dagegen einen Si-C-Si-C-Diederwinkel von 25° [16]. Die endocyclischen Ringwinkel nehmen in Richtung CSiC, CGeC, CSnC ab und in Richtung SiCSi, GeCGe, SnCSn zu, die exocyclischen Winkel CEC sind kleiner als die exocyclischen Winkel SiCSi und beide Winkel kleiner als der Tetraederwinkel (im Grundkörper [-H₂Si-CH₂-]₂ betragen die Winkel HSiH und HCH 108.5 und 108.3° [16]).

6. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Wasser und Luft durchgeführt. Die Lösungsmittel wurden vor Gebrauch mit Natrium/ Benzophenon oder K/Na-Legierung getrocknet und von Luft befreit. Zur Verfügung standen Pentan, Et₂O, THF, 'BuOMe, MeOH (über Molekularsieb), LiMe in Et₂O, Li"Bu in Hexan, Li'Bu in Pentan, LiPh in Benzol/ Et₂O bzw. Cyclohexan/Et₂O. Nach Literaturvorschriften wurden synthetisiert: Me₂SiX–CBr(SiMe₃)₂ [3], $Me_2GeX-CBr(SiMe_3)_2$ [4], $Me_2SnBr-CBr(SiMe_3)_2$ [5], $LiCH(SiMe_3)_2$ [9], $LiC(SiMe_3)_3 \times 2THF$ [17], $NaSi'Bu_3$ [18].

Die NMR-Spektren wurden mit Multikerninstrumenten der Fa. Jeol FX90 Q (¹H, ¹³C, ²⁹Si: 89.55/22.49/ 17.75 MHz) und GSX 270 (¹H, ¹³C, ²⁹Si: 270.17/ 67.94/53.67 MHz) aufgenommen. Zur Überprüfung der Molekülmassen der isolierten Verbindungen dienten die M⁺- sowie (M⁺ – Me)-Peaks sowie deren Isotopenmuster. Die Produkttrennungen erfolgten durch präparative HPLC mit einem Gerät 600 der Firma Waters (Säule: 21.2 mm × 250 mm, Zorbax C18; Fluß 21 ml min⁻¹, Refraktometrie).

6.1. Reaktionen von $Me_2EX-CBr(SiMe_3)_2$ (E = Si, Ge, Sn) mit MR in organischen Solvenzien bei variablen Temperaturen

Man tropft zu einer auf T_1 (°C) gekühlten Lösung von x mmol Me₂EX–CBr(SiMe₃)₂ (E = Si, Ge, Sn; X = F, Cl, Br, I, OPh, OMe) in y ml Solvens (Pentan, Diethylether, Tetrahydrofuran; x/y = c) nx mmol LiPh in Cyclohexan bzw. Benzol/Et₂O, LiMe in Et₂O, LiⁿBu in Hexan, Li^tBu in Pentan, LiCH(SiMe₃)₂ in Et₂O, $LiC(SiMe_3)_3 \times 2THF$ in Et_2O oder $NaSi'Bu_3$ in THF $(n = Molverhältnis von Me_2EX-CBr(SiMe_3)_2 zu MR).$ In einigen Fällen verfährt man auch invers und tropft zu MR in einem auf T_1 (°C) gekühlten organischen Solvens das Brommethan Me₂EX-CBr(SiMe₃)₂ im gleichen Solvens. Hierauf beläßt man das Reaktionsgemisch bei der gleichen bzw. einer höheren Temperatur T_2 (°C) eine Zeit von t Minuten oder erwärmt das Reaktionsgemisch auf Raumtemperatur. Nunmehr wird das Reaktionsgemisch bei T_2 (°C) oder Raumtemperatur mit einer kleinen Menge Methanol versetzt. Anschließend erwärmt man die auf T2 (°C) gekühlten Gemische auf Raumtemperatur. Die Art und Ausbeute jedes gebildeten Produkts wird anschließend NMRspektroskopisch bestimmt, wobei die Identifizierung durch Vergleich mit authentischen Proben erfolgt. Bezüglich der erzielten Ergebnissen vgl. Tabelle 2. Mit in die Tabelle wurden zu Vergleichszwecken einige Umsetzungen mit LiPh und LiⁿBu mit aufgenommen, die bereits an anderen Stellen [3-5,13] — zusamnmen mit der Produktidentifizierung - veröffentlicht wurden. Bezüglich der bei Umsetzungen von LiMe, Li'Bu, LiC(SiMe₃)₃ × 2THF $LiCH(SiMe_3)_2$ und mit Me₂EX-CBr(SiMe₃)₂ gewonnen Produkte vgl. Abschnitt 6.2.

Anmerkungen: (i) Tropft man zu gekühlten Lösungen (-78° C) von 0.30 mmol Me₂SiX–CBr(SiMe₃)₂ (X = F, Br) in 10 ml Et₂O 0.30 mmol LiPh in C₆H₆/Et₂O (Bildung von Me₂SiX–CLi(SiMe₃)₂) und gibt dann 0.70 mmol 'BuBr zu, so enthalten die auf Raumtemperatur erwärmten Reaktionslösungen — laut ¹H-NMR — im Falle X = F (Zers. um 10°C) die Substanz Me₂SiF– CH(SiMe₃)₂ neben nicht identifizierten Verbindungen (wohl En-Reaktionsprodukte von Me₂Si=C(SiMe₃)₂ mit Isobuten $Me_2C=CH_2$ [11]), im Falle X = Br (Zers. um -78° C) praktisch nur (1)₂ (Identifizierung der Verbindungen: [3]). Offensichtlich erfolgt die Deprotonierung von 'BuBr gemäß 'BuBr \rightarrow Me₂C=CH₂ + HBr durch Me₂SiBr-CLi(SiMe₃)₂ bei -78° C in Et₂O noch sehr langsam. — (ii) Die Reaktion von Me2SiF-CBr(SiMe₃)₂/Pentan bzw. Me₂GeOPh–CBr(SiMe₃)₂/ Et₂O mit Li'Bu (Molverhältnis 1:2) führt im Zuge des Erwärmens von -78° C auf $+25^{\circ}$ C auf dem Wege über Me₂SiF-CLi(SiMe₃)₂ (Zers. um 10°C) und $Me_2Si'Bu-CLi(SiMe_3)_2$ (keine Zers.) bzw. über Me₂GeOPh-CLi(SiMe₃)₂ (Zers. um - 40°C) zu 100% Me₂Si'Bu-CH(SiMe₃)₂ und zu 41% Me₂GeOPh- $CH(SiMe_3)_2$ neben (2)₂ und Produkten von 2 mit Me₂C=CH₂ (Tabelle 2, Nr. 39, 51). Somit reagiert Me₂SiF-CLi(SiMe₃)₂ in Pentan rascher mit Li'Bu als mit Me₂SiF-CLi(SiMe₃)₂ (\rightarrow (1)₂) oder mit 'BuBr (\rightarrow $Me_2SiF-CH(SiMe_3)_2),$ $Me_2GeOPh-CLi(SiMe_3)_2$ in Et₂O langsamer mit Li^{*t*}Bu (\rightarrow Me₂Ge^{*t*}Bu–CLi(SiMe₃)₂) als mit Me₂GeOPh–CLi(SiMe₃)₂ (\rightarrow (**2**)₂) und zugleich ^{*t*}BuBr (\rightarrow Me₂GeOPh–CH(SiMe₃)₂) und Me₂C=CH₂ (aus der Reaktion mit 'BuBr).

6.2. Charakterisierung von Produkten aus Reaktionen von $Me_2EX-CBr(SiMe_3)_2$ mit MR (R = Me, 'Bu, $CH(SiMe_3)_2$, $C(SiMe_3)_3$); vgl. hierzu auch [3,4].

6.2.1. $Me_2SiBr-CMe(SiMe_3)_2$ und

 $Me_2SiOMe-CMe(SiMe_3)_2$

Zu einer auf - 78°C gekühlten Lösung von 0.222 g (0.591 mmol) Me₂SiBr-CBr(SiMe₃)₂ in 25 ml THF tropft man 0.591 mmol LiMe in 0.4 ml Et₂O. Nach Erwärmen auf Raumtemperatur, Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile und Zugabe von 5 ml Pentan zum Rückstand filtriert man Unlösliches (LiBr) ab. Laut ¹H-NMR bilden sich 9% Me₂SiMe-CBr(SiMe₃)₂ (Identifizierung durch Vergleich authentischer Probe [19]) und 91% mit 1-(Bromdimethylsilyl)-1,1-bis(trimethylsilyl)ethan Me₂-SiBr-CMe(SiMe₃)₂ (Charakterisierung im Gemisch mit $(Me_3Si)_3CBr)$. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.101$ (s; 2 SiMe₃), 0.523 (s; SiMe₂), 1.003 (s; CMe); (Et₂O, iTMS): $\delta = 0.177$ (s; 2 SiMe₃), 0.635 (s; SiMe₂), ? (s; CMe). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 1.06$ (2 SiMe₃), 5.56 (SiMe₂), 14.26 (CMe), 22.68 (CMe). -²⁹Si-NMR (C₆D₆, eTMS): $\delta = 3.93$ (2 SiMe₃), 30.45 (SiMe₂). — MS: m/z = 295/297 [M⁺ – CH₃; 41%], 231 $[M^+ - Br; 29\%]$. — Anmerkungen: (1) Da sich Me₂-SiBr-CLi(SiMe₃)₂ \equiv 1·LiBr bereits bei -78°C unter Bildung von (1)₂, zersetzt, muß die Methylierung von 1-LiBr durch MeBr rascher als die Zersetzung von 1. LiBr erfolgen. — (2) Versetzt man die Reaktionslösung mit MeOH, so bildet sich neben (Me₃Si)₃CBr 1 - (Dimethylmethoxysilyl) - 1,1 - bis(trimethylsilyl)ethan

Tabelle 2

Ausbeuteprozente (%) der gebildeten Produkte nachfolgender Operationen: (i) Zugabe von MR (LiPh in C_6H_{12}/Et_2O oder C_6H_6/Et_2O , LiMe in Et_2O , LiⁿBu in C_6H_{14} , Li'Bu in C_5H_{12} , LiCH(SiMe₃)₂ in Et₂O, LiC(SiMe₃)₃ × 2THF in Et₂O, NaSi'Bu₃ in THF) zu Me₂EX-CBr(SiMe₃)₂ (Molverhältnis *n*; die inverse Zugabe von Me₂EX-CBr(SiMe₃)₂ zu MR wird durch ein *i* nach *n* angezeigt) in Pentan Pe, Diethylether Et₂O, Tetrahydrofuran THF (*c* = Konzentration von vorgelegtem Me₂EX-CBr(SiMe₃)₂ oder — bei inverser Zugabe — von MR) bei T_1 (°C), (ii) Erwärmung auf T_2 (°C) und *t* (min) Belassen bei T_2 (°C) (beim Aufwärmen auf Raumtemperatur keine Zeitangaben), (iii) Methanolyse, (iv) Erwärmung auf Raumtemperatur (25°C). Es bedeuten R'Br = Edukte = Me₂EX-CBr(SiMe₃)₂ (nach Methanolyse auch als Me₂EOMe-CBr(SiMe₃)₂), MR' = Me₂EX-CM(SiMe₃)₂ (liegt nach Methanolyse als Me₂EX-CH(SiMe₃)₂ (X = F, OMe, OPh) oder Me₂EOMe-CH(SiMe₃)₂ vor), *c*Bu = 'Cyclobutane' [-Me₂E-C(SiMe₃)₂-]₂, R''Br und R''H = 'Substitutionsprodukte' Me₂ER-CBr(SiMe₃)₂ und Me₂ER-CH(SiMe₃)₂

Nr. MR ^a		Edukte R'Br		Molverh. n	Solvens	$c \pmod{1^{-1}}$	$T_1/T_2^{\rm \ b}~(^{\rm o}{\rm C})$	t (min)	Produkte (%)				
		E	Х	_					R'Br	MR' °	c Bu	R"Br ^d	
1	LiPh	Si	F	1	Et ₂ O	0.03	-78/-78	60	0	100	0	0	0
2				2	Et ₂ O	0.03	-78/-78	60	0	0	0	0	100
3			Cl	1	Et ₂ O	0.03	-125/-90	15	0	94	6	0	0
4				1	Et ₂ O	0.03	-30/-30	15	0	0	77	23	0
5			Br	1	Et_2O	0.03	-100/-100	15	0	100	0	0	0
6				1	Et ₂ O	0.03	-78/-78	30	0	69	31	0	0
7				1	Et ₂ O	0.03	-60/-60	120	0	0	89	11	0
8				1	Et ₂ O	0.03	-30/-30	15	0	0	69	31	0
9				2	Et_2O	0.03	-78/-78	15	0	0	0	0	100
10				1	Pe	0.03	-30/-30	15	0	0	35	65	0
11		Ge	F	1	Et ₂ O	0.01	-120/-110	30	0	8	76	16	0
12			Br	1	Et_2O	0.01	-120/-78	10	0	0	61	39	0
13		Sn	Br	1	Et_2O	0.13	-100/+25		0	0	90	5	5
14	LiMe	Si	Br	1	THF	0.02	-78/+25		0	91 °	0	9	0
15	Li ⁿ Bu	Si	F	1	Et ₂ O	0.03	-78/-78	60	0	100	0	0	0
16				2	Et_2O	0.03	-78/-78	60	0	0	0	0	100
17				1	THF	0.03	-78/-78	60	0	100	0	0	0
18			Cl	1	Et ₂ O	0.03	-78/-78	30	0	37	31	32	0
19			Br	1	TĤF	0.03	-110/-100	30	0	100	0	0	0
20				1	Et ₂ O	0.03	-110/-100	120	41	59	0	0	0
21				2	Pe	0.03	-100/-100	360	79	0	0	10	11
22				1	THF	0.03	-78/-78	120	0	88	12	0	0
23				1	Et_2O	0.03	-78/-78	60	0	41	37	22	0
24				1	Pe	0.03	-78/-78	60	0	0	0	94	6
25				1	Et_2O	0.10	-78/+25		0	0	63	37	0
26				1	Et ₂ O	0.30	-78/+25		0	0	53	47	0
27				1	Et ₂ O	0.60	-78/+25		0	0	40	60	0
28			Ι	1	Et ₂ O	0.03	-78/-78	30	0	96	4	0	0
29				1	Et ₂ O	0.03	-78/-78	360	0	62	38	0	0
30			OPh	1	Et_2O	0.23	-78/-78	60	0	100	0	0	0
31			OMe	1	Et ₂ O	0.18	-78/-78	60	0	100	0	0	0
32			"Bu	1	Et ₂ O	0.03	-78/-78	60	90	10	0	0	0
33		Ge	F	1	Et ₂ O	0.01	-120/-110	30	22	11	34	26	7
34				1	Et_2O	0.01	-120/-90	30	0	0	58	42	0
35			Br	1	Et ₂ O	0.02	-120/-78	30	0	0	48	52	0
36			OPh	1	Et ₂ O	0.01	$-78/50^{\text{ f}}$	60	0	0	100	0	0
37			OMe	1	Et ₂ O	0.04	-78/100 f	60	0	0	100	0	0
38	Li'Bu	Si	F	1	Pe	0.04	-100/+25		0	100 ^g	0	0	0

Tabelle 2

Nr. MR ^a		Edukte R'Br		Molverh. n	Solvens	$c \pmod{1^{-1}}$	$T_{1}/T_{2}^{\rm \ b}$ (°C)	t (min)	Produkte (%)				
		E	Х	_					R'Br	MR' °	c Bu	R"Br ^d	R″H
39	Li ^{<i>t</i>} Bu	Si	F	2	Pe	0.04	-100/+25		0	0	0	0	100 ^g
40			Br	1	Pe	0.03	-78/-78	10	79	16	0	0	5
41				1	Pe	0.03	-78/-78	45	54	33	1	0	12 ^h
42				1	Pe	0.03	-78/-78	75	39	43	2	0	16 ^h
43				1	Pe	0.03	-78/-78	300	36	40	4	0	20 ^h
44				2	Pe	0.03	-78/-78	75	3	67	2	0	28 ^h
45				3	Pe	0.03	-78/-78	75	0	65	2	0	31 ^h
46				2i	Pe	0.17	-78/-78	5	33	34	3	0	31
47				3i	Pe	0.25	-78/-78	5	0	26	7	0	67
48				3	Pe	0.11	-78/-78	960	0	0	10	0	90 ⁱ
49		Ge	Br	2i	Et ₂ O	0.09	-78/-78	30	0	0	19	0	70 ^h
50			Br	2i	Et ₂ O	0.09	-50/-50	30	0	0	19	0	81 ^h
51			OPh	2	Et ₂ O	0.02	-78/+25		0	j	24	0	0
52	LiDisyl	Si	Br	1	Et ₂ O	0.07	-78/-78	10	0	80	20	0	0
53	2			4i	Et ₂ O	0.33	-78/+25		0	0	0	0	100
54	LiTrisyl	Si	Br	1	Et ₂ O	0.08	-78/-78	20	53	30	17	0	0
55	-			2	Et ₂ O	0.09	-78/+25		0	0	100	0	0
56				4	Et ₂ O	0.06	-78/+25		0	0	82	0	18
57	NaSi'Bu ₃	Si	F	1	Pe	0.01	$-78/\pm0$		0	100	0	0	0
58	2		Br	1	THF	0.03	-78/-78	75	0	99	1	0	0
59			Br	1	Et ₂ O	0.03	-78/-78	75	3	97	0	0	0
60		Ge	F	1	Et ₂ O	0.04	$-78/\pm 0$		0	100	0	0	0

^a LiDisyl = LiCH(SiMe₃)₂; LiTrisyl = LiC(SiMe₃)₂ × 2THF.

^b Metallierungsgeschwindigkeit für Me₂EX–CBr(SiMe₃)₂ (Br/M-Austausch; vgl. auch [3,4]): Sie sinkt für die Metallierungsreagenzien in Richtung LiPh>Li"Bu, LiCH(SiMe₃)₂>NaSi'Bu₃>LiC(SiMe₃)₃ bzw. Li"Bu>Li'Bu (vgl. z.B.: Nr. 5, 20, 23, 52, 59, 54 bzw. Nr. 24, 41), für die Solvenzien in Richtung THF>Et₂O>Pe (vgl. z.B. Nr. 19, 20, 21).

^c Zerfallsgeschwindigkeit für Me₂EX-CLi(SiMe₃)₂ (vgl. auch [3,4,8]): $\tau_{\frac{1}{2}}$ (Me₂SiX-CLi(SiMe₃)₂ in Et₂O ca. 1 h (i) für X = Hal bei 10°C (F), -90°C (Cl), -80°C (Br), -50°C (I), (ii) für X = OR bei -100°C (R = Tos), -10°C (PO(Ph)₂), 30°C (PO(OPh)₂), >120°C (Ph), \gg 120°C (Me) und (iii) für X = SPh bei 10°C. Die Zerfallshalbwertzeiten verkleinern sich in Richtung Me₂SiX-CLi(SiMe₃)₂ > Me₂GeX-CLi(SiMe₃)₂ [$\tau_{\frac{1}{2}}$ (Et₂O) für EX = SiOMe/GeOMe = sehr groß bei 120°C/25 min bei 35°C, SiOPh/GeOPh = groß bei 120°C/22 min bei -40°C, SiF/GeF = 77 min bei 8°C/klein bei -78°C, SiBr/GeBr = 75 min bei -78°C/sehr klein bei -78°C und in Richtung Pentan < THF < Et₃O (vgl. Nr. 22, 6, 23, 41, 42, 43).

^d Substitutionsgeschwindigkeit für Me₂EX–CLi(SiMe₃)₂ (X/R-Austausch; vgl. auch [3,4]): vgl. für Abhängigkeit (i) vom Solvens Nr. 22, 23, 24, (ii) von der Eduktkonzentration Nr. 25, 26, 27, (iii) von der Reaktionstemperatur Nr. 6, 7, 8, (iv) vom Metallierungsmittel Nr. 6, 23, 52, (v) vom Substituenten X Nr. 18, 23, 29 sowie 34, 35.

^e Keine Methanolyse; isoliert als Me₂SiBr-CMe(SiMe₃)₂.

^f Nach Abkondensation von "BuBr.

^g Protoniert durch 'BuBr.

^h Geringe Mengen (<5%) an entstandenen Produkten aus Isobuten und **1**, **2** [11] nicht berücksichtigt. Bei Nr. 49 zudem eine nicht identifizierbare Substanz in 11% Ausbeute (Me₂GeH-CH(SiMe₃)₂?).

ⁱ Me₂SiH–CH(SiMe₃)₂

¹41% als Me₂GeOPh-CH(SiMe₃)₂, 35% als En-Reaktionsprodukte von Me₂Ge=C(SiMe₃)₂ mit Isobuten Me₂C=CH₂ [4].

Me₂SiOMe–CH(SiMe₃)₂. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.114$ (s; SiMe₂), 0.158 (s; 2 SiMe₃), 1.052 (s; CMe), 3.18 (s OMe). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = -$ 0.86 (SiMe₂), 0.61 (2 SiMe₃), ? (CMe), 49.98 (OMe), 12.90 (CMe). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 3.07$ (2 SiMe₃), 18.98 (2 SiMe₂).

6.2.2. $Me_2SiH-CH(SiMe_3)_2$

Zu einer auf - 78°C gekühlten Lösung von 0.417 g (1.11 mmol) Me₂SiBr-CBr(SiMe₃)₂ in 10 ml Et₂O tropft man 3.33 mmol Li'Bu in 2.2 ml Pentan und beläßt die Reaktionsmischung 16 h bei -78° C. Nach Zugabe von 1 ml MeOH, Erwärmen der Mischung auf Raumtemperatur, Abkondensieren aller im Ölpumpenvakuum flüchtigen Anteile und Zugabe von 5 ml Pentan zum Rückstand filtriert man Unlösliches (LiBr) ab. Laut ¹H-NMR bilden sich 10% (1)₂ (Identifizierung durch Vergleich mit authentischer Probe [3]) und 90% farblosfestes Dimethylsilyl-bis(trimethylsilyl)methan Me₂SiH-CH(SiMe₃)₂. — ¹H-NMR (C₆D₆, iTMS): $\delta = -0.890$ (d; ${}^{3}J_{\text{SiHCH}} = 0.9$ Hz; Si₃CH), 0.128 (s; 2 SiMe₃), 0.147 $({}^{3}J_{\text{SiHSiMe}} = 3.9 \text{ Hz}; \text{ SiMe}), 0.191 \text{ (d; } {}^{3}J_{\text{SiHSiMe}} = 3.9 \text{ Hz}$ SiMe), 4.34 (m; C₃SiH). $- {}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = -0.45$ (SiMe₂), 2.06 (Si₃C), 2.58 (2 SiMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 0.12$ (SiMe₂), 0.31 (2 SiMe₃).

6.2.3. Me₂Si^tBu-CH(SiMe₃)₂ (gemeinsam mit O. Schieda)

Zu einer auf - 78°C gekühlten Lösung von 1.760 mmol Li'Bu in 7 ml Pentan tropft man 0.210 g (0.558 mmol) Me₂SiBr-CBr(SiMe₃)₂ in 3 ml Pentan. Nach Zugabe von 1 ml MeOH erwärmt man die Mischung auf Raumtemperatur. Laut ¹H-NMR bilden sich 7% (1)₂ sowie 26% Me₂SiOMe-CH(SiMe₃)₂ (Identifizierung durch Vergleich mit authentischer Probe [3]) und 67% Me₂Si'Bu-CH(SiMe₃)₂. Nach Abfiltrieren unlöslicher Anteile (LiBr), Abkondensation aller im Ölpumpen vakuum flüchtigen Anteile und Zugabe von 1 ml MeOH/1 ml 'BuOMe zum Rückstand trennt man durch präparative HPLC mit MeOH als mobiler Phase. Retentionszeiten: 6.2 min (Me₂SiOMe-CH(SiMe₃)₂), 11.5 min ($Me_2Si^{t}Bu-CH(SiMe_3)_2$), 32.5 min (1)₂. — (tert-*Butyl-dimethylsilyl)*[*bis(trimethylsilyl)*]*methan* Me₂Si-^tBu-CH(SiMe₃)₂, farblose Flüssigkeit, Sdp. 100°C/ Hochvak. — ¹H-NMR (C₆D₆, iTMS): $\delta = 0.693$ (s; Si₃CH), 0.147 (s; SiMe₂), 0.169 (s; 2SiMe₃), 0.883 (s; Si^{*t*}Bu); (Et₂O, iTMS): $\delta = -0.707$ (s; Si₃CH), 0.040 (s; $SiMe_2$, 0.165 (s; 2 SiMe_3), 0.862 (s; Si'Bu). — ${}^{13}C{}^{1}H{}$ -NMR (C₆D₆, iTMS): $\delta = -1.84$ (Si₃CH), -0.09(SiMe₂), 4.46 (2 SiMe₃), 27.54 (CMe₃), ? (CMe₃). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = 0.78$ (2 SiMe₃), 6.29 $(SiMe_2)$. — MS: m/z = 274 [M⁺; 1%], 259 [M⁺ – Me; 13%], 217 [M⁺ – ^{*t*}Bu; 100%]. — Analyse (C₁₃H₃₄Si₃, $M_{\rm r} = 274.7$). Ber. C 56.79, H 12.48; gef. C 56.90, H 12.60. — Anmerkung: Versetzen von 0.12 g (0.38

mmol) Me₂SiF-CBr(SiMe₃)₂ in 10 ml Pentan bei – 100°C mit 0.76 mmol Li'Bu in 0.44 ml Pentan führt nach Erwärmen des Reaktionsgemischs auf Raumtemperatur — laut ¹H-NMR — ausschließlich zu Me₂Si-'Bu –CH(SiMe₃)₂.

6.2.4. $Me_2Ge^tBu - CH(SiMe_3)_2$ (Gemeinsam mit Ch.-K. Kim): Vgl. [4].

6.2.5. Me₂Si[CH(SiMe₃)₂]-CH(SiMe₃)₂

Zu einer auf - 78°C gekühlten Lösung von 0.445 g (2.675 mmol) LiCH(SiMe₃)₂ in 8 ml Et₂O tropft man 0.250 g (0.664 mmol) Me₂SiBr-CBr(SiMe₃)₂ in 2 ml Et₂O. Nach Erwärmen des Reaktionsgemischs auf Raumtemperatur, Zugabe von 1 ml MeOH, Abkondensation aller im Ölpumpenvakuum flüchtigen Anteile und Zugabe von 5 ml Pentan zum Rückstand filtriert man Ungelöstes (LiBr) ab. Laut ¹H-NMR erfolgt quantitative Bildung von Dimethyl[bis(trimethylsilyl)methyl]silan Me₂Si[CH(SiMe₃)₂]₂, das nach Abkondensieren des Pentans als gelbes Öl zurückbleibt. — ¹H-NMR (C₆D₆, iTMS): $\delta = -0.400$ (s; 2 Si₃CH), 0.142 (s; 4 SiMe₃), 0.292 (s; SiMe₂); (Et₂O, iTMS): $\delta = -$ 0.375 (s; 2 Si₃CH), 0.160 (s; 4 SiMe₃), 0.297 (s; SiMe₂). - ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 4.10$ (4 SiMe₃), 5.22 (SiMe₂), 5.42 (2 Si₃CH). - ²⁹Si-NMR (C₆D₆, eTMS): $\delta = -0.536$ (4 SiMe₃), 0.341 (SiMe₂). — MS: m/z = 361 [M⁺ – Me; 10%], 273 [M⁺ – SiMe₄; 24%], 217 $[M^+ - CH(SiMe_3)_2; 100\%]$. — Analyse $(C_{16}H_{44}Si_5,$ $M_r = 376.95$). Ber. C 50.98, H 11.76; gef. C 51.86, H 10.75%.

6.2.6. $Me_2Si[C(SiMe_3)_3]$ -CH(SiMe_3)₂ und Me_2SiOVi -C(SiMe_3)₂-SiMe_2-CH(SiMe_3)₂

Zu einer auf -115°C gekühlten Lösung von 0.207 g (0.551 mmol) Me₂SiBr-CBr(SiMe₃)₂ in 6 ml Et₂O tropft man 0.550 mmol LiPh in 1 ml C₆H₁₂/Et₂O. Nach $\frac{1}{2}$ stündigem Belassen bei -115° C und anschließendem Erwärmen auf -90°C gibt man zur Reaktionsmischung 0.881 g (2.341 mmol) LiC(SiMe₃)₃ \times 2THF in 10 ml Et₂O zu, erwärmt auf Raumtemperatur, gibt 1 ml MeOH zu, kondensiert alle im Ölpumpenvakuum flüchtigen Anteile ab, setzt 5 ml Pentan zum Rückstand und filtriert Unlösliches (LiBr) ab. Laut ¹H-NMR bilden sich 75% (1)₂ (Identifizierung durch Vergleich mit authentischer Probe [3]), 25% Me₂Si[C(SiMe₃)₃]-CH(SiMe₃)₂ und Spuren von Me₂SiOVi-C(SiMe₃)₂-SiMe₂-CH(SiMe₃)₂. Die Trennung des Gemischs erfolgt nach Abkondensation von Pentan und Zugabe von 2 ml MeOH/2.5 ml 'BuOMe durch präparative HPLC mit MeOH als mobiler Phase. Retentionszeiten: 8.2 min ((Me₃Si)₃CH), 32.6 min (Me₂SiOVi–C(SiMe₃)₂–SiMe₂– $CH(SiMe_3)_2)$, 36.0 min (1)₂, 41.0 min $Me_2Si[C (SiMe_3)_3$]-CH $(SiMe_3)_2$. {Dimethyl[tris(trimethylsilyl)methyl]silyl}bis(trimethylsilyl)methan Me₂Si[C(SiMe₃)₃]-

Tabelle 3 Ausgewählte Parameter zu den Röntgenstrukturanalysen von $(1)_2$, $(2)_2$ und $(3)_2$

	(1) ₂	(2) ₂	(3) ₂
Summenformel	C ₁₈ H ₄₈ Si ₆	C ₁₈ H ₄₈ Ge ₂ Si ₄	$C_{18}H_{48}Sn_2Si_4$
Molmasse (g mol ⁻¹)	433.10	522.10	614.30
Temperatur (K)	293(2)	293(2)	293(2)
$Mo-K_{\alpha}$ (Å)	0.71073	0.71073	0.71073
Kristallgröße (mm)	$0.53 \times 0.33 \times 0.20$	$0.33 \times 0.47 \times 0.47$	$0.53 \times 0.40 \times 0.33$
Kristallsystem	Monoklin	Monoklin	Monoklin
Raumgruppe	C2/c	C2/c	C2/c
a (Å)	15.057(6)	15.173(7)	15.505(4)
b (Å)	11.395(4)	11.454(6)	11.676(2)
c (Å)	18.226(4)	18.327(8)	18.310(5)
α (°)	90.00(2)	90.00(4)	90.00(2)
β (°)	119.70(2)	119.58(3)	119.91(2)
γ (°)	90.00(3)	90.00(4)	90.00(2)
Volumen (Å ³)	2716(2)	2770(2)	2873(1)
Ζ	4	4	4
Dichte (ber.) (Mg m^{-3})	1.059	1.252	1.420
Absorptionskoeff. (mm ⁻¹)	0.309	2.345	1.907
F(000)	960	1104	1248
θ -Bereich (°)	2.30-22.97	2.29-23.04	2.25-22.98
Index-Bereiche	$-16 \le h \le 14, \ 0 \le k \le 12, \ 0 \le l \le 20$	$-16 \le h \le 14, \ 0 \le k \le 12, \ 0 \le l \le 20$	$-16 \le h \le 14, \ 0 \le k \le 12, \ 0 \le l \le 20$
Gesammelte Reflexe	1967	2007	2064
Unabhänige Reflexe	1895	1935	1990
Parameter	118	118	118
GOF	1.119	0.562	1.105
$R_1 \left[I > 2\theta(I) \right]$	0.0394	0.0625	0.0526
wR_2	0.1099	0.1766	0.1318
Restelektronendichte (e Å ⁻³)	0.245	1.354	1.360

CH(SiMe₃)₂, farbloser Festkörper. — ¹H-NMR (C₆D₆, iTMS): $\delta = -0.010$ (s; Si₃CH), 0.300 (s; 2 SiMe₃), 0.341 (s; 3 SiMe₃), 0.504 (s; SiMe₂); (Et₂O, iTMS): $\delta = 0.264$ (s; 2 SiMe₃), 0.335 (s; 3 SiMe₃), 0.496 (s; SiMe₂), ? (Si₃CH). — ¹³C{¹H}-NMR (C₆D₆, iTMS): $\delta = 5.42$ (Si₃CH), 6.95 (3 SiMe₃), 7.82 (2 SiMe₃), 8.01 (Si₄C), 10.63 (SiMe₂). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = -1.06$ (2 SiMe₃), 0.67 (3 SiMe₃), 2.62 (SiMe₂). — MS: m/z = 433 [M⁺ – Me; 18%], 289 [M⁺ – CH(SiMe₃)₂; 58%], 217 [M⁺ – C(SiMe₃)₃; 100%]. — Analyse (C₁₉H₅₂Si₆, $M_r = 449.13$). Ber. C 50.81, H. 11.67; gef. C 51.11, H 11.72.

1,1,3,3-Tetramethyl-4,4-bis(trimethylsilyl)-1-vinyloxy-Me₂SiOVi-C(SiMe₃)₂-SiMe₂-CH(Si-1,3-disilabutan $Me_3)_2$, farbloser Festkörper. — ¹H-NMR (C_6D_6 , iTMS): $\delta = -0.438$ (s; Si₃CH), 0.204 (s; 2 SiMe₃), 0.234 (s; 2 SiMe₃), 0.319 (s; SiMe₂), 0.327 (s; SiMe₂), 5.15–6.07 (m; CH=CH₂); (Et₂O, iTMS): $\delta = 0.152$ (s; 2 SiMe₃), 0.193 (s; 2 SiMe₃), 0.264 (s; SiMe₂), 0.268 (s; SiMe₂), ? (Si₃CH, CH=CH₂). — ${}^{13}C{}^{1}H$ -NMR (C₆D₆, iTMS): $\delta = 2.59$ (2 SiMe₃), 3.37 (2 SiMe₃), 5.00 (SiMe₂), 5.72 (SiMe₂), 7.72 (Si₃CH), ? (Si₃CH), 116.0 $(=CH_2)$, 138.2 (= CH). — ²⁹Si-NMR (C₆D₆, eTMS): $\delta = -1.17$ [(Me₃Si)₂CHSi], -0.12 [(Me₃Si)₂CSi₂], 4.62 (CSiMe₂C), 5.66 (OSiMe₂C). — MS: m/z = 476[M⁺; 6%], 461 [M⁺ - Me; 25%],. — Anmerkung: Das für die Bildung von Me2SiOVi-C(SiMe3)2-SiMe2CH(SiMe₃)₂ aus Me₂SiBr–CLi(SiMe₃)₂ benötigte LiOVi entsteht offensichtlich durch Spaltung des an LiC(SiMe₃)₃ × 2THF gebundenen Tetrahydrofurans mit anwesendem LiPh (besonders aktiv gegen THF) gemäß C₄H₈O + LiPh \rightarrow CH₂=CH₂ + PhH + LiOCH= CH₂ [20].

6.3. Reaktionen von $Me_2EBr-CBr(SiMe_3)_2$ (E = Si, Ge) mit MR in organischen Solvenzien bei variablen Temperaturen in Anwesenheit von RN_3 [8]

6.4. Kristallstrukturen von $(1)_2, (2)_2, (3)_2$

Für Röntgenstrukturanalysen geeignete Kristalle wurden im Falle von $(1)_2$ und $(3)_2$ durch Kristallisation aus Et₂O in Form farbloser Parallelepipede, im Falle von $(2)_2$ durch Kristallisation aus C₆H₆ in Form farbloser Platten erhalten. Für die Strukturbestimmungen wurde ein Mach 3 Gerät der Fa. Nonius genutzt. Die Strukturlösungen erfolgten mit SHELXS-86 und wurden mit SHELXL-93 (mit voller Matrix gegen F^2) verfeinert. Alle Nichtwasserstoffatome wurden in anisotroper Beschreibung verfeinert, H-Atome unter Einschluß berechneter Atomlagen, die mit einem Reitermodell und fixierten isotropen U_i- Werten in die Verfeinerung einbezogen wurden. Angaben zu den Röntgenstrukturanalysen sind in Tabelle 3 zusammengestellt. Die kristallographischen Daten der beschriebenen Strukturen sind als 'supplementary publication' Nos. CCDC-132634 für $(1)_2$, CCDC-132635 für $(2)_2$ und CCDC-132633 für $(3)_2$ hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [e-mail:deposit@ ccdc.cam.ac.uk]

Anerkennung

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung der Untersuchungen mit Sachund Personalmitteln.

Literatur

- Silicium und seine Gruppenhomologen. Zugleich 56. Mitteilung über ungesättigte Verbindungen des Siliciums und seiner Gruppenhomologen. 130. (55) Mitteilung: Ref. [7]. 129. Mitteilung: N. Wiberg, T. Blank, A. Purath, G. Stößer, H. Schnöckel. Angew. Chem. 111 (1999) 2745; Angew. Chem. Int. Ed. Engl. 38 (1999) 2563. 54. Mitteilung: Ref. [11].
- [2] (a) D. Seyferth, J.L. Lefferts, J. Am. Chem. Soc. 96 (1974) 6237.
 (b) D. Seyferth, J.L. Lefferts, J. Organomet. Chem. 116 (1976) 257.
- [3] (a) N. Wiberg, G. Preiner, Angew. Chem. 89 (1977) 343; Angew. Chem. Int. Ed. Engl. 16 (1977) 328. (b) N. Wiberg, G. Preiner, O. Schieda, Chem. Ber. 114 (1981) 2087, 3518. (c) N. Wiberg, G. Preiner, O. Schieda, G. Fischer, Chem. Ber. 114 (1981) 3505. (d) N. Wiberg, J. Organomet. Chem. 273 (1984) 141.

- [4] N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2966, 2980. (b)
 N. Wiberg, J. Organomet. Chem. 373 (1984) 141.
- [5] N. Wiberg, S.-K. Vasisht, Angew. Chem. 103 (1991) 105; Angew. Chem. Int. Ed. Engl. 30 (1991) 93.
- [6] R.B. Woodward, R. Hoffmann, Angew. Chem. 81 (1969) 797; Angew. Chem. Int. Ed. Engl. 8 (1969) 781.
- [7] N. Wiberg, S. Wagner, S.-K. Vasisht, K. Polborn, J. Can. Chem. (in press).
- [8] N. Wiberg, T. Passler, S. Wagner, J. Organomet. Chem. 598 (2000) 304.
- [9] (a) N. Wiberg, G. Wagner, Chem. Ber. 119 (1986) 1455, 1467.
 (b) N. Wiberg, G. Wagner, G. Reeber, J. Riede, G. Müller, Organometallics 6 (1987) 35.
- [10] W. Hiller, M. Layh, W. Uhl, Angew. Chem. 103 (1991) 339; Angew. Chem. Int. Ed. Engl. 30 (1991) 324.
- [11] N. Wiberg, S. Wagner, S.-K. Vasisht, Chem. Eur. J. 4 (1998) 2571, und dort zit. Lit.
- [12] J.L. Wardell, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, 1982, pp. 43–83.
- [13] N. Wiberg, P. Karampatses, Ch.-K. Kim, Chem. Ber. 120 (1987) 1203.
- [14] N. Wiberg, H. Köpf, J. Organomet. Chem. 315 (1986) 9.
- [15] S.S. Al-Juaid, C. Eaborn, S.M. El-Hamruni, P.B. Hitchcock, J.D. Smith, Organometallics 18 (1999) 45.
- [16] B. Rempfer, G. Pfafferott, H. Oberhammer, N. Auner, J.E. Boggs, Acta Chem. Scand. A42 (1988) 352.
- [17] (a) R.L. Merker, M.J. Scott, J. Organomet. Chem. 4 (1965) 98.
 (b) M. Cook, C. Eaborn, A. Jukes, J. Organomet. Chem. 24 (1970) 647.
- [18] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542 (1997) 1.
- [19] D. Seyferth, R. Lamberth, H. Hanson, J. Organomet. Chem. 24 (1970) 647.
- [20] R.B. Bates, L.M. Kroposki, D.E. Potter, J. Org. Chem. 37 (1972) 560.